

Polysaccharide Based Surfactants as Alternative to Nonylphenol Ethoxylates

Zarif Farhana Mohd Aris, Vishal Bavishi, Bridgette Budhlall, Ramaswamy Nagarajan Department of Plastics Engineering, University of Massachusetts Lowell, MA 01854

Introduction

- ❖ The household and personal care sectors represent the largest market for surfactant consumption in the United States
- Recently there has been a strong trend in replacing conventional surfactants with more environmentally benign compounds and manufacturers are exploring novel eco-friendly alternatives produced from biobased sources and sustainable methods
- ❖ The challenge is to find surfactants that are nontoxic and biodegradable but meet performance requirements at low cost

Figure 1: Surfactant consumption according to market segment¹

Problems with Common Alternatives

- Raw materials:

 - → Rely on plant sources which have competing food value
 - ♦ May have other competing applications such as bio-fuels
- Some of the existing alternatives have:
 - ♦ Poor acid/base stability
 - ♦ Require other co-surfactants for efficient cleaning
 - ♦ Toxicity and biodegradability issues

Project Objectives

- Develop more environmental friendly alternative to nonylphenol ethoxylate (NPE) surfactants
- Design and synthesize non-toxic and preferably biodegradable surfactants using polysaccharides as starting material
- Keep the modification process clean and simple

Surfactants From Fruit Waste & Algae

Synthesis of Novel Polysaccharide-Based Surfactant

HYDROPHILIC MODIFICATION:

*Measured in 0.1% analyte concentration at 24°C using Du Noüy ring method

RESULTS:

- Hydrophilic modification and characterization of polysaccharide based surfactants (PSS) were successful
- Surface tension of PSS were comparable to that of commercial surfactants, Triton X-100 and Sodium Lauryl Sulfate (SLS)

Acid/Base Stability

Many sugar-derived surfactants fall apart when exposed to acids in water because the linkage are vulnerable

TEST METHOD:

Surfactants were left in acid/base condition for 30 days and re-measured their surface tension

RESULTS:

❖ Polysaccharide-based surfactant (PGA-SO₃) has comparable acid/base stability to that of commercial surfactants

Cleaning Efficiency (Immersion Test)

Surfactant	Contaminant Removed (%)			
	Hydrophilic Type Dirt		Hydrophobic Type Dirt	
	Bathroom	Bathroom	Hucker's	DCC-
	Soil	Scum	Soil	17
DI Water	43.2	26.9	3.69	0.15
Triton X-100	96.6	59.8	21.04	2.92
SLS	60.7	37.6	19.75	3.84
PGA-SO3	93.0	58.5	7.32	0.84

RESULTS:

- PSS show excellent cleaning efficiency towards hydrophilic type dirt
- However, contaminant removal is lower for lipophilic contaminants (i.e. Hucker's soil and DCC-17)
- Further modification is required by attaching long alkyl chain (lipophilic group) for cleaning improvement

Summary

- ❖ Polysaccharide based surfactants (PSS) derived from PGA and Alginic acid were successfully synthesized and characterized
- PSS showed surface tension comparable to commercial surfactants, Triton X-100 and SLS
- ❖ Acid/Base stability and cleaning efficiency of PSS were comparable to that of Triton X-100 and SLS

Future Work

- Comparative study with Sugar-Based Surfactants (APGs)
- Drop-in ingredient in detergent formulation
- Other tests Emulsifying Properties, Foam Stability

Acknowledgements

- ❖ Financial support from Toxics Use Reduction Institute (TURI) is gratefully acknowledged
- We would like to thank Ms. Pam Eliason, Dr. Jason Marshall and Timothy Weil from TURI for the insightful discussions
- ❖ We thank Prof. James Whitten for providing us access to the surface potentiometer

References

- 1. European Committee of Organic Surfactants and their Intermediates (CESIO) Proceedings 6th World Surfactant Congress 2004. The Statistical World of Raw Materials, Fatty Alcohols and Surfactants
- 2. European Union 2002. 4-Nonylphenol (branched) and Nonyl phenol Risk Assessment Report. Institute for Health and Consumer Protection, European Chemicals Bureau, Vol. 10.
- 3. Patrick Foley et. al., Derivation and synthesis of renewable surfactants, Chem Soc. Rev., 41, 2012